SILOON (Scripting Interface Languages for Object-Oriented
Numerics) gives users the ability to rapidly prototype their
scientific codes in a simple yet elegant fashion using the
popular scripting languages Python and Perl. While
programming in these flexible and dynamic languages,
SILOON users maintain the capability of accessing the full
power and complexity of powerful FORTRAN and C++
libraries executed on high-performance parallel computers.

Overview of How SILOON Works

The SILOON toolkit parses source code from existing
object-oriented numerical class libraries and extracts
information regarding the interfaces to functions and class
methods. This information is then used to generate glue and
skeleton code, which when compiled, provides the run-time
support for linking user scripts with back-end computational
engines.

The parsing stage of SILOON is accomplished using
Program Database Toolkit (PDT). PDT analyzes application
source code and then makes this information available
through a callable interface.

Because SILOON was designed within a client/server
model, users can easily develop distributed applications. For
example, a Perl scripting client may connect to an
application running on a remote computational server,
query the application about its current state, and then pipe
data to a visualization tool. After examining the visual
information, a user may wish to adjust run-time parameters
in the application before continuing the computation.

Because SILOON (via PDT) uses a commercial ANSI-
compliant parser (from the Edison Design Group), one of its
unique features is its ability to handle many of the
complexities of C++ correctly. These include

=templated classes and functions,

= virtual and static member functions,
= constructors and destructors,

= overloaded operators and functions,
= default function arguments,

= references

*enumerations,

= typedefs, and

= the Standard Template Library (STL).

In addition, because Python and Perl provide automatic
garbage collection, SILOON adds this feature to the
capabilities of C++.

Early versions of SILOON were targeted for use with the
POOMA (Parallel Object-Oriented Methods and
Applications) framework, the Visualization Interconnection
Framework (VIF), and PAWS (Parallel Application WorkSpace).

How to Use SILOON

There are five essential steps to using SILOON. The
following example assumes that there is a C++ source file,
save_the_world.cpp, which includes the necessary header
files defining the public interface exposed by SILOON.
I"? Create and initialize the SILOON save_the_world
project directories for use with Python.

siloon-init save_the world --python

.

—® —

Parse user code and create the program interface database.
si | oon- parse save_t he_worl d. cpp d!]
€) Generate scripting interfaces.
-l pung
| si | oon-gen save_t he_worl d. pdb d!]
Q Compile and link.
nake ﬂh
G Run interactively.
‘ pyt hon ﬂh
Interface
AEDFEi Generation
{P“I‘} j‘ 5 (SILOON)
Generated
?:%'-3':9 Interface
(C. CH+, Code
FORTRAM)

Script
(Perl,
Python) [C CH+,
FORTRAM)
Dispatcher
(invoke)

Code Examples

A series of examples are provided. In each example, the
C++ source code is provided along with the Perl and
Python calls.

Function Call

C++ function definition:

Templated Class

C++ class definition:

tenplate <class T> class Td ass {
private: T val ue;
public: TA ass(T i)
public: T getVal ue()

{ value =i; }
{ return val ue; }

float tenperature(int i, int j) { return 3.0; } d!]

Python call:

Python object creation and member function call:

tdass = TAass_float_(1.0)
val ue = td ass. get Val ue()

T = tenperature(0, 0)

Perl call:
$T = tenperature(0, 0);

Perl object creation and member function call:

$tdass = TA ass_float_->new(1.0);
$val ue = $t A ass->get Val ue() ;

|

Member Function Invocation

C++ class definition:

class Integerdass {
private: int val ue;
public: Integerdass(int i) { value
public: int getVal ue()

i;)

{ return value; }

Python object creation and member function call:

idass = Integerd ass(2)
val ue i d ass. get Val ue()

Perl object creation and member function call:

$i d ass I nt eger d ass->new(2) ;
$val ue = $i A ass->get Val ue();

b

Name Mangling

The example above shows the instantiation of a templated
object of type TClass<float>. Since neither Python nor Perl
support angle bracket notation ("<>"), a name mangling
scheme has been chosen to handle these cases. The default
mangling of TClass<float> is TClass_float_ as seen above. As
name mangling can often be ugly and obtrusive, default
names can be overridden via a file which provides a
mapping between mangled names and function prototypes.

Suppose a user wanted to use the name TClassFloat for the
TClass<float> constructor, rather than TClass_float . One
only need edit the prototypes file (initially generated
automatically) and replace the default name "TClass_float_"
in the first column with "TClassFloat" as shown below:

"TA ass<float> &
Td ass<fl oat > : TA ass<fl oat >(fl oat)"

"Td assFl oat "

Los Alamos

NATIONAL LABORATORY

o L) ot

advanced Compaiting boratory
LALP-99-200 November 1999
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by
the University of California for the United States Department of Energy under contract W-7405-ENG-
36. All company names, logos, and products mentioned herein are trademarks of their respective
companies. Reference to any specific company or product is not to be construed as an endorsement
of said company or product by The Regents of the University of California, the United States
Government, the U.S. Department of Energy, nor any of their employees.

Names for overloaded functions may be specified in a
similar manner.

More iriforrrizition agolt SILSO), ..

e-rrall: rasmussn@lanlgoy
weg: wwwvacllanlgov/siloon/

O} aniel girgr
Cornguting Lagoreiigry Softyyere, ..
wEg: wyyweacllanlgovisoiiere/
el 1999 Advenced Cornguting Lagoraiory Safiyyere

cecl

Tris work suggoriad gy ing US Degartnient of Ensrg)y,

